Predictive Analytics, Machine Learning and Data Science for Big Data: Sydney, 24–25 November 2016
$2,112 – $2,860
Predictive Analytics, Machine Learning and Data Science for Big Data: Sydney, 24–25 November 2016

Predictive Analytics, Machine Learning and Data Science for Big Data: Sydne...

Event Information

Share this event
Date and Time

Training Choice Sydney (Elizabeth St)

Level 3, 5 Elizabeth Street

Sydney, NSW 2000


View Map

Event description


This course is an introduction to a range of fundamental skills, techniques and tools for those aspiring to become Data Scientists. These include Big Data, Machine Learning and Cloud Computing.

Data Science, Predictive Modelling and Big Data skills are of vital and growing importance in commercial, government, commercial  and not-for-profit organisations. Those in the Management, Product, Risk and IT functions benefit from skills and literacy in this area.

This two-day course introduces a range of  techniques as they are commonly used in business, and provides practical experience in their use. No prior knowledge of R is required.


Course outline

This course will provide a conceptual overview and practical hands-on experience of a wide range of key tools, techniques and processes.

At the heart of the data mining toolkit is the suite of predictive modelling methods. Accordingly, the course will develop attendees' literacy in the strengths, characteristics and correct application of a range of predictive modelling methods, from relatively simple linear models through to complex and powerful Random Forests, Support Vector Machines, Decision Trees, Tree Boosting Machines and Neural Networks will be covered along the way.

It will also teach the correct framing of predictive modelling problems, suitably preparing data, evaluating model accuracy and stability, interpreting results and interrogating models.

The two key styles of predictive modelling – operational for targeting and explanatory for insights – will be described and distinguished.

As well as predictive modelling, the course will cover a range of other key data mining tools, including:

  • Data exploration and visualisation: univariate summaries, correlation matrices, heat maps, hierarchical clustering.
  • Cluster analysis – used for customer segmentation and anomaly detection
  • Other "unsupervised" outlier detection tools.

This course will primarily be taught using Rattle, a graphical interface for predictive modelling and data science in R. Participants will be exposed to "Big Data" techniques as applied to machine learning and deployed on Cloud Computing platforms.

Additional topics

The following additional topics may be covered depending on the pace and interests of the class:

  • Principal components analysis – used to segment and interpret multivariate data.
  • Link and network a nalysis visualisation – which provide a simple and compelling way to communicate and analyse relationships, and are commonly applied in forensics, human resources and law enforcement.
  • Association analysis – used in retail market basket analysis and the assessment of risk groupings.
  • Frequent item set analysis.


Who should attend?

This course is suitable for anyone in management, administrative, product, marketing, finance, risk and IT roles who works with data and wants to become acquainted with modern data analysis tools.



No prior knowledge of R is required to take this course.


Course outcomes

Attendees should, by the end of the course:

  • Learn fundamentals of predictive modelling and experience using a range of methods. 
  • Have improved their ability to assess the effectiveness and fitness for purpose of any predictive modelling tool or technique. 
  • Have experience with a range of unsupervised data techniques.
  • Be exposed to Big Data and Cloud Computing applications.

Meals and refreshments

Morning tea, lunch, and afternoon tea will be provided.


Course instructor

The course will be led by Presciient director Dr Eugene Dubossarsky or another Presciient instructor. 

Dr Dubossarsky is the head of the Sydney Users of R Forum. Eugene is also Principal Founder of Analyst First, an international analytics industry organisation. He is a founder of the Institute of Analytics Professionals of Australia (IAPA); Director, University of New South Wales School of Mathematics and Statistics Industry Advisory Board; and a recognised industry leader in Business Analytics. Eugene is an experienced, analytics professional of 20 years' experience programming in R and its parent language, S. 



Thank you very much for the information I gathered  at the Predictive Modeling course I attended recently. As a beginner in R, I thought that it might be a bit overwhelming. But I was wrong! Eugene did a fantastic job at explaining the concepts and all practical work was engaging and easy to follow. Entertaining, informative and most importantly relevant - it has already proven valuable in my work.

—Sanja Djekic - Data Manager/Analyst at South Western Sydney Local Health District

I attended the Predictive Analytics course presented by Eugene Dubossarsky from in March of 2013 in North Sydney. I am primarily a computer scientist, and have a broad but very shallow knowledge of the area of machine learning and analytics. The course gave me a very good starting point to start gaining a deep knowledge of the topic. The tooling presented gives an excellent place to start learning and is useful beyond the class setting. I think the key value of the course is that it was presented by a domain expert who is passionate about the topic and growing the maturity of the field; and so was very open with the sorts of insights that you don't read in a text book. This included the high level concepts within analytics, models of thinking about analytic problems and key lessons from his career implementing predictive analytics. I therefore left the course knowing what I don't know, and knowing where to start, which is more than I expected. I would recommend it to any computer scientist.

—Quinton Anderson - Chief Technology Officer /Lead Software Engineer at IZAZI Solutions



Please ask about our discounts for group bookings


Use to email us any questions about the course, including requests for more detail, or for specific content you would like to see covered, or queries regarding prerequisites and suitability.

If you would like to attend but for any reason cannot, please also let us know.


All bookings are made with the understanding that courses may be cancelled up to 5 working days before running, with all fees refunded.


Course material may vary from advertised due to demands and learning pace of attendees. Additional material may be presented, along with or in place of advertised.

Presciient training, coaching, mentoring and capability development for analytics

Please ask about tailored, in-house training courses, coaching analytics teams, executive mentoring and strategic advice and other services to build your organisation's strategic and operational analytics capability.

Our courses include:

  • Introduction to R
  • Predictive analytics and data science for big data
  • Forecasting and trend analysis fundamentals
  • Statistics and data analysis
  • Forensic data analysis
  • Advanced R
  • Advanced machine learning masterclass
  • Fundamentals of data analysis
Share with friends
Date and Time

Training Choice Sydney (Elizabeth St)

Level 3, 5 Elizabeth Street

Sydney, NSW 2000


View Map

Save This Event

Event Saved